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Since lijima’s discovery in 1991 carbon nanotubes, including ~ Scheme 1. Schematic Representation of Procedures for DNA-
single-wall carbon nanotubes (SWNTs) and multiwall carbon Bgﬁgte:rt?c?égAssembllng of Multiple Carbon Nanotubes and
nanotubes (MWNTSs), have been shown to possess superior P
electronic, thermal, and mechanical properties to be attractive for i -l ‘Nt\}f:' Ulx
a wide range of potential applicatioh3.The use of carbon 5 l"
nanotubes as “building blocks” in nano-/microelectronic devices
could revolutionize the electronic industry in the same way that H H.c————c-Nnn

. . — . PN e = @™ a
the microchips have revolutionized the computer industry. However, b &N onarr
it has been a long-standing big challenge to efficiently integrate H "
the carbon nanotube “building blocks” into multicomponent/ o
multifunctional structures or devices. Generally speaking, multi-
functional structures can be prepared by (i) self-assembly of small-
sized entities into larger structures (“bottom-up” approach) and/or I
(i) systematic reduction of large systems down to smaller sizes to e Hi s
produce multifunctional nanoscale structures (“top-down” ap-
proach)? Although various synthetic and post-synthesis fabrication our recent work on the DNA-directed self-assembling of multiple
methods have been devised for the preparation of carbon nanotubegarbon nanotubes and gold nanoparticles into multicomponent
with certain specific structural features (e.g., aligned, micropat- structures.
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terned)? the formation of multicomponent (and, hence, multifunc- Scheme 1 shows the reaction steps for the DNA-directed self-
tional) nanotube self-assemblies from preformed individual carbon assembling of multiple carbon nanotubes using the gold nanopar-
nanotubes has been much less discussed in the litePamethe ticles as a linkage, which involves the acid (H)®@xidation of

other hand, DNA chains have been used to create various functionalcarbon nanotubes to introduce carboxylic end gréfmsssDNA
structures and/or devices through the sequence-specific pairinggrafting. The ssDNA-attached carbon nanotubes were then subjected
interactions Recently, the DNA-based biomolecular recognition to hybridization with cDNA chains grafted on gold nanoparticles
principle has also been applied to carbon nanotubes to constructthrough the highly specific thietgold interactiont?

not only nanotube electronic devices (e.g., field-effect transistors),  In a typical experiment, we carried out the acid oxidation of
by DNA-directed placements of carbon nanotubes attached with both MWNTs generated from pyrolysis of iron (Il) phthalocyarine
single-strand DNA chains (ssDNAs) on a substrate region-specif- and SWNTs (Carbon Nanotechnologies Inc.) in an aqueous solution
ically grafted with complimentary DNA chains (cDNAs), but also  of concentrated nitric acid (70 wt%) under ultrasonification at room
carbon nanotubeDNA electrochemical sensofshy chemically temperature for 8 h. After purification by centrifugation, dialysis,
attaching a carbon nanotube electrode with ssDNA chains for and filtration? the resultant acid-oxidized carbon nanotubes were
hybridization with redox-labeled cDNA chains. As far as we are redissolved in water for chemical bonding with amino-end-
aware, however, the potential use of DNA-pairing interactions for functionalized ssDNA chains (i.e., [AMC6]TTGACACCAGACC-
creating multicomponent structures from multiple carbon nanotubes, AACTGGT-3) through the amide formation in the presence of 1-(3-
including SWNTs and MWNTSs, in solution has been largely dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC)
neglected. In addition to the use of certain ssDNA-attached carbon coupling reagent for overnight at room temperafiréhe products
nanotube electrodes for DNA sequence sensing via hybridization from the above reactions are designated as ssDMWNTs and
with redox-labeled cDNA chain®,Moghaddam and co-workefs ssDNA—-SWNTS, respectively. Meanwhile, gold nanoparticles were
have previously demonstrated that cDNA-grafted gold nanoparticles Prepared from an aqueous solution of HAKGH,O and sodium
could be used for visualizing the ssDNA functional sites on the Citrate according to the published procedtiréollowed by end-
nanotubes by the sequence (site)-specific hybridization and electron@ttachment with cDNA chains of the sequence [HSC6]ACCA-
microscopic imaging of the nanoparticles. The above work prompted GTTGGTCTGGTGTCAA-3via the strong thiotgold interactiof

us to exploit the use of DNA hybridization for DNA-directed self-  (designated as: cDNAAu). The DNA hybridization was then

assembling of multiple carbon nanotubes into various multicom- Performed by keeping the cDNAAU nanoparticles with sSSDNA
ponent structures. In this communication, we present results from MWNTSs and/or ssSDNA-SWNTSs in an aqueous solution in a water

bath at 42°C for 2 h. The unpaired DNA and Au, if any, could be
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Figure 1. Typical AFM image of (a) the acid-oxidized SWNTs (scanning
area: 3.7%m x 3.75um; vertical scale bar: 150 nm), (b) the acid-oxidized
MWNTSs (scanning area: 7.§0m x 7.80um; vertical scale bar: 150 nm),
and (c) the as-prepared gold nanoparticles (scanning areau 605.00
um; vertical scale bar: 100 nm).

b)

Figure 2. Typical AFM image of (a) the self-assembly of sSDNMWNTs

and cDNA-Au nanoparticle (scanning area: 0&% x 0.55um; vertical
scale bar: 50 nm) and (b) the 3-D surface plot of (a) with different color
codes (scanning area: 0.8 x 0.85um).

Figure 3. Typical AFM image of (a) the self-assembly of a SSDNBWNT
and ssDNA-MWNT through a cDNA-Au nanoparticle (scanning area:
5.60um x 5.60um; vertical scale bar: 300 nm), (b) multiple sSDNA
SWNTs and ssDNAMWNTSs connected with a cDNAAu nanoparticle
core (scanning area: 1.10n x 1.10um; vertical scale bar: 80 nm), and
(c) three ssDNA-attached nanotubes connected by two cBAlAnano-
particles (scanning area: 1.1&n x 1.15um; vertical scale bar: 50 nm).

SWNTs (Figure 1a) and MWNTSs (Figure 1b), in which isolated
nanotubes with a relatively short tubular lengt8(um) are clearly

and multinanotubes connected by multinanoparticles (Figure 3c),
depending on the reaction conditions. Note, however, some
branched structures with thin nanotubes end-attached onto the
sidewall of thick nanotube arms are also seen in Figure 3b. The
observed nanotube branches could be attributed to the possible
formation of dsDNA double helix linkages between the tip-modified
ssDNA-SWNTs and the sidewall-modified sSDNAMWNTSs
through a common cDNAAu nanoparticle, as the acid-oxidation
reaction is known to introduce carboxyl groups at any defect sites
even on the sidewalls of MWNTs while mainly at the tips of
SWNTs2® Therefore, the above results, together with the fact that
cDNA chains can be chemically attached onto many other métals,
indicate that judicious connection of various DNA-modified carbon
nanotubes with the large varieties of nanoparticles grafted by DNA
chains of complimentary sequences should lead to the formation
of many multinanotube multicomponent assemblies. The structure
of the self-assemblies thus formed can be, in principle, regulated
by modifying single nanotube ends with ssDNA chains of different
base sequences and/or controlling the number of cDNA chains
grafted onto each of the nanopatrticles.

In conclusion, we have demonstrated that a wide range of
multicomponent structures of carbon nanotubes can be constructed
by DNA-directed self-assembling of carbon nanotubes and gold
nanoparticles. In view of the availability of various carbon
nanotubes of different structures and DNA chains of different base
sequences, the work presented here represents an important advance
in constructing many multiple carbon nanotube self-assembled
structures for multifunctional material and device applications.
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evident. Figure 1c shows isolated gold nanoparticles with an averagerig|s.

diameter of about 150 nm. The AFM images for sSSDNSWNTSs,
ssDNA-MWNTs, and cDNA-Au nanoparticles show features
similar to those of the corresponding images given in Figure 1,
indicating no self-aggregation was caused by the attachment of
DNA chains.

The DNA-directed self-assembling of carbon nanotubes was
initially investigated by mixing sSDNAMWNTs (0.03 mg/mL)
with cDNA—Au nanoparticles (0.03 mg/mL) in an aqueous solution
at 42°C. As can be seen in Figure 2a, individual MWNTSs were
interconnected by the gold nanoparticle through the DNA hybrid-
ization. The three-dimensional surface plot of Figure 2a with
different color modes revealed a “gap” between the nanoparticle
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